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Modelling the wind response of 
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Thanks to improvements in computation methods, materials and construction techniques, cable
bridges have been revolutionized over the recent past to an extent never before experienced. This
evolution has been accompanied by an increase in span lengths, thus implying greater flexibility
along with higher risk with respect to dynamic effects. Only after the spectacular collapse of the
Tacoma Bridge in the United States in 1940 did such dynamic effects produced by wind on large
bridges actually start to be examined with greater emphasis.

The initial research focused on studying stability as regards aeroelastic phenomena. These effects arise
on a flexible structure whenever displacements and aerodynamic forces interact. Highly complex
phenomena take place as the oscillating structure disturbs airflow and, consequently, forces gener-
ated act upon the structure itself. This type of problem has been examined since the 1920's in the field
of aeronautics. Several analytical formulations have been proposed in this same context. Unfortu-
nately, as opposed to airfoils, bridge deck cross-sections are poorly-profiled structures, which prevents
against any direct application of such theories. The work of Bleich [1], Bisplinghoff [2] and
Scanlan [3] in particular enabled establishing the set of models describing aeroelastic forces for
bridge decks. The fundamental difference inherent in these models, as compared with those from
aeronautics, stems from the fact that they rely heavily on experimental parameters of the cross-sec-
tion of the bridge deck.

During the 1960's, the dynamic response of structures submitted to wind turbulence began receiving
attention, via the theory of random vibrations. Initial applications of this theory to the study of flex-
ible bridges submitted to wind are owed to Davenport [4], whose approach consisted of analyzing
the turbulence effect (as characterized by its spectral density function) like a stochastic loading that
excites the structure, which is typically considered as having so-called "classical" damping. This
hypothesis serves to decouple the movement equations (by using the undamped eigenmodes basis)
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into a set of independent modal equations. It then becomes possible to separately evaluate the spectral
power density and the standard deviation of the response of each mode. These two problem situa-
tions (stability study and turbulence response evaluation) were thus treated independently and the
interaction between both phenomena had for a long time been neglected.

In current practice, the study of wind dynamic effects on bridges is divided into two parts: aeroelastic
stability verification, and evaluation of structural response under the turbulent wind effect. The
aeroelastic behaviour of the fluid-structure system is evaluated thanks to wind tunnel tests and, if
necessary, the bridge cross-section is profiled in order to ensure aeroelastic stability prior to assessing
the turbulent wind response. The influence of aeroelastic forces on the turbulence response is consid-
ered in a simplified way by introducing a so-called "aerodynamic damping" superimposed upon the
damping of each mode [5]. In most structures, modal equations are coupled by damping terms and, in
the case of large bridges in airflow, by aeroelastic terms. From a general point of view, aeroelastic
effects may be interpreted as corrective terms for bridge damping and stiffness. The dynamic char-
acteristics are thereby modified: oscillation frequencies and modal shapes are both "aeroelastically-modi-
fied". Modal superposition using classical eigenmodes would thus no longer be possible herein.

Over the past twenty years, many methods have been proposed in order to add realism when con-
sidering fluid-structure interaction effects in the response to turbulence, either over the frequency
domain [6-8] or over the time domain [9,10]. The work presented in this article constitutes an exten-
sion to this past research and makes use of the capacities offered by current computing resources. A
general and comprehensive approach is thus proposed herein for studying the temporal and spectral
dynamic responses of flexible bridges submitted to wind turbulence by incorporating aeroelastic
forces. The first part of this article will focus on describing and mathematically modelling the forces
generated by turbulent airflow on a bridge deck. Special emphasis will be placed on the forces pro-
duced by turbulence and aeroelastic forces, for which formulations within both the temporal and fre-
quency domains are given. The second part is devoted to a numerical evaluation of the wind
response of flexible bridges. The set of dynamic equations of the coupled fluid-structure system will
be established. Next, verification of the structural stability will be presented by introducing a method
for determining critical flutter wind speeds. The turbulence response will then be introduced via two
approaches: the first consists of performing a pure-frequency computation of the "aeroelastically-
coupled" system of modal equations, while the second solves system dynamic equations over the
time domain.

The numerical implementation of these developments has been conducted through the EOLE mod-
ule of the CESAR-LCPC finite element method program. In order to illustrate the various aspects
associated with the proposed approach, the results obtained from finite element computations on the
Vasco de Gama Bridge (Lisbon, Portugal) will be discussed in a third part of this article.

Modelling turbulent wind
Turbulent wind speed is classically modeled as the superposition of an average term and a fluctuat-
ing term. Within a Cartesian coordinate system (Ox,Oy,Oz) with the x-axis lying parallel to the pre-
vailing wind direction, the speed at point P in space can then be written as follows:

(1)

where (P) is the average wind speed (parallel to the x-axis of the coordinate system) and u(P,t),
v(P,t) and w(P,t) the turbulent wind speed fluctuations along the x, y and z directions, respectively
(see Fig. 1). 

The random nature of turbulent wind speed fluctuations invokes the stochastic process theory as a
well-adapted tool for representing such fluctuations. In this context, the parameters serving to char-
acterize turbulent wind, along with its spatio-temporal variability, are: the standard deviations of
turbulent speed fluctuations (σu,σv,σw), turbulence scales, the spectral and interspectral power
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densities of each component, and the coherence coefficients. These parameters are all determined
from wind speed measurements on the study site. Details on both the definition and estimation of
these parameters are available in Biétry [11].

Wind-generated forces on bridge decks
The presence of a structural body in airflow modifies locally both the flow trajectory and speed.
These modifications depend on the shape of the body as well as on airspeed and wind turbulence
level. The disturbances induced by the presence of the body in the flow also cause a pressure field to
form around the body. Integration of this pressure field yields a torsor of aerodynamic forces, which
is generally divided into three components: a so-called drag force FT whose direction is parallel to
that of the mean wind, a so-called lift force FN perpendicular to the drag force, and a torsion
moment M (see Fig. 2).
For a bridge deck situated in turbulent airflow, it is possible to approximate the forces generated by
wind on the cross-section, by summing the static forces corresponding to the mean wind, self-sustained
forces and forces due to turbulence. This sum is then justified by a first-order linearization of wind
effects [7]. The aeolian forces can then be expressed as:

(2)

where  represents the vector of forces generated by wind on the

structure;  the static force vector of the prevailing wind;  the aeroelastic (or

self-sustained) force vector;  the vector of forces generated by wind turbulence;  the

vector containing turbulent wind speed fluctuations;  and  the structural displacement and
speed vectors, respectively.

Static forces
The components of static aerodynamic forces at point P along the deck can now be written as follows:

(3)

with: 

where ρ is the mass density of air, B a characteristic section dimension (in general the width), CT, CN,
and CM the aerodynamic coefficients of drag, lift and moment, which depend on the incident wind
angle. These coefficients are measured during wind tunnel tests.

Figure 1
Components of turbulent wind speed

Figure 2
Components of the force produced by turbulent wind
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Aeroelastic forces
In Equation (2), the terms associated with the turbulence incorporate both speed fluctuations and
incident wind angle with respect to the deck at "rest", whereas aeroelastic terms are related to the
aerodynamic forces produced by deck movement. These forces may be expressed over either the
time or frequency domain.
The initial formulations that account for aeroelastic phenomena stem from the field of aeronautics
and entail so-called indicial functions, which allow expressing the impact of a disturbance in the dis-
placement signal on the aerodynamic force signal. The effect of displacement history, at time t, on the
force signal value gets included by a convolution product. Formulations analogous to those devel-
oped for airfoils have been proposed for bridge decks by Bleich [1], Bisplinghoff [2], Lin [7] and
Scanlan [12]. The fundamental difference in these models compared to those in aeronautics relates to
being based on experimental parameters of the target cross-section. The vector containing the three
aeroelastic force components at point P along the element takes the following form:

(4)

with: 

where ; with dj and  (j = y,z,αx) being the displacement and speed components at point P
of the deck, respectively.  and cj,ik (i = N,T,m; j = 0,..., 4; k = p,h,α) are the indicial function coef-

ficients of the cross-section; these coefficients are determined either experimentally or from non-sta-
tionary coefficients of the cross-section [13]. 
In the frequency-based formulation, aeroelastic forces are expressed as functions of both the dis-
placements and first derivative of displacements. These forces also depend on the real coefficients
measured during a wind tunnel test on the section in oscillation; such coefficients in turn depend on
wind speed and oscillation frequency [3]. The vector containing the three aeroelastic force compo-
nents at any point on the deck axis can thus be written as follows:

(5)

which leads to stating:

d· j
•
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where ω is the oscillation frequency; K = Bω/  the reduced frequency; ,  and 
(i = 1,...,6) so-called non-stationary or Scanlan adimensional coefficients, measured during a wind
tunnel test on a mobile model representing a deck cross-section.

Forces due to turbulence

The hypothesis of a quasi-stationary position enables considering that the instantaneous forces pro-
duced by turbulent wind on a deck segment are equal to those that would occur on this segment in permanent

flow with the same speed and angle of incidence. The approximations  and 

(i = C, D or M) serve to derive expressions for the terms due to turbulence:

(6)

with: 

where  (i = T,N,M) are the derivatives of aerodynamic coefficients with respect to the incident

wind angle.

It turns out that the quasi-stationary model provided by the previous set of equations is merely an
approximation for evaluating the forces due to turbulence. Even for laminar flow, aerodynamic
forces actually vary over time. The aerodynamic coefficients input into Equation (6) often consist of
average values and are said to be stationary. In order to account for the non-stationary character of
airflow, the aerodynamic forces must be corrected. A more precise representation of the problem [14]
necessitates indicial functions analogous to those established for the definition of aeroelastic forces.
This step leads to developing an expression for forces due to turbulence, i.e.:

(7)

which then allows stating: 

where ψik (i = N,T,M,k = u,w) are the indicial functions.

Finite element discretization
As indicated in the preceding sections, the mathematical models of wind effects on a bridge deck
apply, on a section reference axis (e.g. the center of thrust), the resultant of pressures generated on
the given section. This resultant force is expressed by means of three components (drag, lift and
moment) distributed along the considered element. Within the scope of finite element discretization
of a structure, the best-adapted type of model proves to be the three-dimensional beam element. In the
local coordinate system of this element type, the displacement field of any point P along the element
is defined as a function of nodal displacement vectors {dnd}, via the interpolation matrix [N(s)]. This
relation is written as follows:

(8)

The equivalent beam forces are yielded by the relation [15]:

(9)

where  is the nodal force vector corresponding to element e, and L is the beam length.
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As part of this study framework, the elements considered are 2-node, three-dimensional beam ele-
ments; the nodal force vector is thus of size 12. Expressions (8) and (9) serve to evaluate the aeolian
forces at the extremity nodes of each beam element contained in the mesh representative of the struc-
ture. Building the nodal loading vector for the entire structure, by reliance upon the stiffness, mass
and damping matrices, requires an element-by-element assembly process over the whole mesh. The
vectors comprising the various aeolian force terms for an entire structure, as discretized by a mesh
with "n" degrees of freedom, can then be expressed as follows:

Aeroelastic forces (time domain)

(10)

where {d(t)} and  are respectively the displacement and nodal speed vectors (of size n) of the

mesh; ,  and  are the matrices (of size n × n) of indicial function coefficients
for the entire structure; these matrices are formed by means of assembling the elementary matrices
composed from relations (4), (8) and (9). 

Aeroelastic forces (frequency domain)

(11)

where [A(ω)] and [B(ω)] are matrices (of size n × n) analogous to matrices [a(ω)] and [b(ω)] of
Equation (5) and whose assembly process is analogous to that of the matrices in Equation (10).

Forces due to turbulence (time domain)

• Quasi-stationary approach: (12a)

where {V′(t)} is the vector containing the three components of turbulent wind speed fluctuation for
each node of the completed structure, and [D] a matrix that allows the transition between turbulent
wind speed fluctuations and nodal forces generated on the entire structure. This matrix is also built
by means of an assembly process that utilizes the elementary force formulation from Equation (6).

• Indicial function approach: (12b)

where [D(t – τ)] is formed analogously to matrix [D]; inside this matrix appears the indicial functions
defined in Equation (7).

Forces due to turbulence (frequency domain)

• Quasi-stationary approach: (13a)

• Indicial function approach: (13b)

where [D(ω)] denotes the Fourier transform of [D(t)]; inside this transform would appear terms of the
type Ψik(ω) (i = N,T,M, k = u,w) obtained from the corresponding indicial functions defined in
Equation (7).
Details of the formulation of these various aeolian force vectors may be found in reference [16].

Movement equations
The wind-induced vibrations on a flexible bridge, discretized by finite elements, are handled using
a second-order differential system: 

(14)

in which [M], [C] and [K] are the mass, damping and stiffness matrices (size n × n) of the structure,
respectively; n is the number of degrees of freedom of the system; {d(t)} is the nodal displacement

vector;  is the aeroelastic force vector (a function of the structure's mean wind speed,

d· (t){ }•
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displacements and oscillation speeds); and  represents the vector of forces generated by
turbulent wind.
The system in (14) can also be expressed over the frequency domain in the form:

(15)

Given relations (11) and (13b), it may be deduced that:

(16)

The structural response may now be written in the basis [Θ] formed by the first m eigenvectors of the
undamped system:

(17)

where {q(ω)} is the generalized coordinates vector.
By introducing (17) into (16) and by preliminarily multiplying the result by t[Θ], the following may
be derived:

(18)

where  are the generalized diagonal mass and stiffness matrices;  the generalized

damping matrix, which is not necessarily diagonal;  and  the generalized
aeroelastic damping and stiffness matrices. These matrices assume the form:

(19a)

(19b)

Use of the modal base enables reducing the differential system dimension by choosing an eigenvec-
tor subspace. Should the initial system be composed of n × n-dimensioned matrices, the generalized
system matrices will then be sized m × m if [Θ] comprises just m ≤ n eigenmodes.

Stability analysis
The coupled fluid-structure system, whose response has been described by Equation (18), becomes
unstable when for a given wind speed , a frequency ω exists capable of nullifying the determinant
of the impedance matrix [G(ω)]:

(20)

The wind speeds corresponding with this condition are called "critical flutter speeds". These speeds
are determined by implementing the pK-F method, of the "fixed-point" type; this method has been
inspired from the pK method used in aeronautics [17]. To proceed, solutions of the s = (δ + i)ω type
are sought:

(21)

where |.| represents the determinant function, and ℜ(s) = δω and ℑ(s) = ω are the real and imagi-
nary parts of s, respectively.
In considering that the m frequencies ω0,j(j = 1,...,m) of the undamped system have been computed,
the method then consists of applying (for each frequency) the following iterative procedure, on the
basis of an initial wind speed  until reaching a final speed :

•

U

U0 Uf
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Turbulence response computations

Computation over the frequency domain
The first applications of random vibration theory to studying structures submitted to turbulent wind
are attributed to Liepmann [14]; they focused on thin airfoils. Davenport [4] was the first to assimi-
late wind in the boundary atmospheric layer with turbulent flow and to generalize Liepmann's
method for determining wind effects on suspension bridges.

This method considers the forces produced by turbulent wind on the structure like a random action
(characterized by its spectral power density function) that induces vibrations to the structure. It then
becomes possible to evaluate the standard deviation of the amplitude of the vibratory movements
corresponding to each of the structure's eigenmodes. The primary stages of this approach are:

characterization of the probabilistic nature of wind turbulence by the spectral power density (SPD)
of turbulent speed fluctuations;

probabilistic characterization of the forces produced by wind on the structure, by means of aero-
dynamic coefficients measured in a wind tunnel;

computation of the structure's eigenmodes in order to determine its resonant response (system
transfer function); and

determination of statistical magnitudes characterizing the response (spectral power density of dis-
placements and internal forces), using the previous data.

For a given average wind speed, Equation (18) yields the stochastic response of the structure in the
following form:

(22)

or moreover: (23)

where [H(ω)] is the system transfer matrix.

The spectral power density of the generalized coordinate is thereby obtained by multiplying the
right-hand side of Equation (18) by its adjoint expression:

(24)

in which [Sqq(ω)] is the spectral density matrix of the generalized coordinates, [SV′V′(ω)] the inter-
spectral power density matrix of turbulent wind speed fluctuations, and "*" the conjugation operator.

For a speed  (k = 0,...,f),
1. Computation of two initial values of si:

.

2. Computation of the 18 non-stationary Scanlan coefficients corresponding to each frequency.
3. Computation of the determinant of [G(s)] corresponding to each value sj,1( ) and sj,2( ).
4. The following value of s is then defined by use of a linear interpolation diagram:

5. Steps 3 and 4 are repeated until obtaining _[G(sj,2)]_ < tolerance 1. Upon each new iteration
sj,1( ) = sj,2( ) (preceding iteration) and sj,2( ) = sj,3( ).
6. Once the step 5 test is verified, the aeroelastically-modified oscillatory response of the structure
corresponding with  speed  has  been  ident i f ied.  Moreover ,  i f  the  condit ion :
ℜ(sj,2) < tolerance 2 is verified, flutter is encountered for angular frequency ℑ(sj,2) and
speed  constitutes a critical flutter speed.

Tolerances 1 and 2 are both convergence thresholds.

Uk

Uk Uk
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The interspectral density matrix of wind speeds is defined by:

(25)

where  is the interspectral power density between the range of

wind fluctuations at various model nodes, with p being the number of nodes.
Within the product of expression (24), [D(ω)] [SV′V′(ω)]t [D(ω)]*, terms of the following type appear:

(26)

with I, m = T,N,M; j,k = u,v,w; the product Ψij(ω) (ω) is known as the aerodynamic admittance
function. The product (26) may be simplified by neglecting the interspectral density between different
turbulent wind speed components, i.e.:

(27)

Another possible simplification consists of assuming that all aerodynamic admittance functions are
equal. These two hypotheses thus allow factorizing the indicial function Ψij(ω) of matrix [D(ω)].
Lastly, the variance of the generalized coordinate is calculated using Equation (24) by:

(28)

or in Equation (17), the variance of nodal displacements may be evaluated by:

(29)

where j is the corresponding node number (j = 1,..., p) and i the displacement component (i = y,z,α).
In practice, the extreme value of the response is essential for structural design. Consequently, the
extreme value of the structure's displacements is set by:

(30)

where g is a peak factor whose value normally lies between 3.5 and 4.5 [4].

Computation over the time domain
An alternative approach to spectral methods consists of first simulating random turbulent wind speed sig-
nals at the structure's nodes, then integrating in the time domain the system movement equations. This
approach also serves to study structures exhibiting non-linear behaviour.
Within the general framework of a structure with non-linear behaviour with linear viscous damping,
the system dynamics equation may be written in the form:

(31)

in which {P(t)} is the vector containing the forces developed by the structure at time t (these forces
are a non-linear function of structural displacements), {FA(t)} is the vector of aeroelastic forces, and
{FT(t)} denotes the vector of forces generated by turbulent wind on the structure at time t.

Ψkm
*

• •
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The vector of turbulent forces is expressed in the form of a Duhamel integral (12b):

Inside the matrix, [D(t = τ)] indicial functions of the type Ψjk(j = N,T,M; k = u,w) appear. Unfortu-
nately, at present, no analytical or experimental formulation of these functions exists for bridge
decks. As a result, for the temporal approach, the hypothesis of a quasi-stationary position has been
adopted (2a), which then implies:

By applying the modified Newton-Raphson method to analyze non-linear systems [18], Equation (31)
may be rewritten as follows:

with: (33)

(34)

[tgK] is the tangent stiffness matrix of the structure at time t, and k the corresponding iteration number
(k = 1, 2, 3,...,). The initial values of iterations k are provided by:

(35)

The temporal integration of movement equations may be conducted in an approximate fashion with
Newmark's method. The following hypotheses, with respect to displacements and speeds at time
t + ∆t, can then be incorporated:

(36)

(37)

Substituting Equations (36) and (37) into (32) yields:

(38)

with:  (39)

Equation (38) is the method's fundamental expression. Within each time step, it is thus necessary to
start by computing the "residual" vector that complies with Equation (39) and then the displacement
increment vector {∆d}(k) from the expression in (33). The new values of {d(t + ∆t)}(k) and { (t + ∆t)}(k)

are computed next on the basis of Equations (36) and (37), respectively. This sequence leads to a new
value of the residual; iterations (k = 1, 2, 3,...,) then get repeated until the value of {∆d}(k) is rendered
small enough.

The theoretical developments set forth above were implemented in the CESAR-LCPC© software
package and applied to studying the wind response of a specific structure: the Vasco de Gama
Bridge, over the Tagus River in Lisbon: a cable-stayed bridge with a central span measuring 420 m

••

(32)

d·•

APPLICATION TO THE VASCO DE GAMA BRIDGE
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for an 830-m total length. The deck is 30.9 m wide and formed by one reinforced concrete slab and
two lateral prestressed beams 2.60 m high. The aeolian data of the project site are listed in Table I.
Table II and Figure 3 show the aerodynamic and aeroelastic characteristics of the deck cross-section.

The selected Vasco de Gama Bridge model used in this study was devised by the SETRA Engineering
Agency during structural design studies conducted using the SYSTUS finite element code. For the
present study, this model was input into the CESAR-LCPC program; it contains 754 nodes and
1,325 three-dimensional beam elements. Figure 4 displays the bridge model mesh. The first eight
eigenfrequencies of the bridge computed with CESAR-LCPC are provided in Table III. All modes are
damped using a structural damping coefficient of 0.57%.

Figure 5 depicts the variation in modal damping vs. wind speed at deck level. The stability loss due
to flutter (zero damping condition) arises for the first and second torsion modes at wind speeds of
84.6 m/sec and 111.5 m/sec, respectively. The first critical flutter speed for the complete bridge
model may be compared to that obtained from wind tunnel measurements on a taut-strip model test.
The instability speed, as measured in a wind tunnel, corresponds to 89.2 m/sec on a full-scale struc-
ture. Despite the differences between mechanical models and between turbulence characteristics in
a wind tunnel and on site, the two critical speeds are relatively similar.

Turbulence response has been evaluated for a computation speed corresponding to 39.3 m/sec at
deck level (52 m above ground). Only the first ten vibration modes were considered for this compu-
tation. Turbulence has been modeled to conform with data from Table I. Figure 6 presents the varia-
tion in standard deviation of vertical displacements along the bridge deck.

TABLE I
Turbulence characteristics of the study site

Roughness: = 0.005 mm; average speed at 10 m: = 32.3 m/sec

Turbulence intensities: Iu = 0.11; Iv = 0.11; Iw = 0.07

Longitudinal scales: 

Transverse scales: 

Vertical scales: 

Lateral coherence: 

Vertical coherence: 

TABLE II
Aerodynamic and aeroelastic characteristics of the bridge deck

Aerodynamic data
(extracted from [19])

Indicial function coefficients
(extracted from [13])

CT(0) = 0.144

CN(0) = – 0.0337

CM(0) = 0.015

z0
* U10
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As for modelling bridge deck aeroelastic forces, the indicial function coefficients from Table II were
used. "Synthetic" signals of spatially-correlated turbulent wind speeds were derived along the
structure [20]. Figure 7 shows the variations in both vertical and horizontal wind speed components
along the deck at time t = 10 sec for one of these wind simulations.

In order to integrate movement equations, the time step was set at 2.5 ms and the simulation period
at 40 sec. Figure 7 displays the variation in standard deviation of vertical displacements along the
deck for various simulations of turbulent wind speeds. The estimation of these standard deviations
is also given for five wind simulations, in addition to the results obtained from the frequency method
(without aerodynamic admittance). It may be observed that results computed using the temporal
method slightly overestimate those resulting from frequency computations. These differences are
related primarily to the estimation of indicial function coefficients based on Scanlan coefficients.

Figure 3
Aeroelastic coefficients of the deck cross-section 
(extracted from [19])

Figure 4
Finite element mesh of the Vasco de Gama Bridge

TABLE III
Eigenfrequencies of the Vasco de Gama Bridge model

Mode Frequency
(Hz) Type

1 0.165 Longitudinal

2 0.329 Vertical bending

3 0.360 Sway

4 0.439 Vertical bending

5 0.494 Torsion

6 0.613 Vertical bending

7 0.638 Torsion

8 0.760 Vertical bending
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Figure 5
Computation of critical flutter speeds

Figure 6
Standard deviation of vertical displacements on the deck axis

Figure 7
Variation in vertical and horizontal wind components, and variation in the standard deviation of vertical displacements on the deck axis
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The study presented herein has proposed a general formulation for evaluating the response of
bridges sensitive to wind effects on frequency and time domain. Conducted within the scope of a
finite element-driven formalism, the approach adopted has relied upon incorporating aeroelastic
effects into turbulence response computations. These effects represent the interaction between air
and moving structure; they serve to highlight the oscillation frequency dependence of the structure's
damping and stiffness terms. The stability analysis of the coupled "fluid-structure" system allows
determining the speeds at which a risk of flutter appears. A method for identifying these critical
speeds has moreover been proposed. Both the stability analysis and turbulence response computa-
tion methods were numerically implemented within a specific module of the CESAR-LCPC finite
element computation code. These developments were validated by means of comparison with exper-
imental data on an aeroelastic model. This module was then applied to compute full structures, for
which a sampling of results has also been included.
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